Abstract

Water-metal oxide interfaces are central to many phenomena and applications, ranging from material corrosion and dissolution to photoelectrochemistry and bioengineering. In particular, the discovery of photocatalytic water splitting on TiO2 has motivated intensive studies of water-TiO2 interfaces for decades. So far, a broad understanding of the interaction of water vapor with several TiO2 surfaces has been obtained. However, much less is known about liquid water-TiO2 interfaces, which are more relevant to many practical applications. Probing these complex systems at the molecular level is experimentally challenging and is sometimes possible only through computational studies. This review summarizes recent advances in the atomistic understanding, mostly through computational simulations, of the structure and dynamics of interfacial water on TiO2 surfaces. The main focus is on the nature, molecular or dissociated, of water in direct contact with low-index defect-free crystalline surfaces. The hydroxyls resulting from water dissociation are essential in the photooxidation of water and critically affect the surface chemistry of TiO2. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 75 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call