Abstract

We present herein the synthesis of a new polycationic pseudo[1]rotaxane, self-assembled in excellent yield through hydrazone bonds in aqueous media of three different aldehyde and hydrazine building blocks. A thermodynamically controlled process has been studied sequentially by analyzing the [1 + 1] reaction of a bisaldehyde and a trishydrazine leading to the macrocyclic part of the system, the ability of this species to act as a molecular receptor, the conversion of a hydrazine-pending cyclophane into the pseudo[1]rotaxane and, lastly, the one-pot [1 + 1 + 1] condensation process. The latter was found to smoothly produce the target molecule through an integrative social self-sorting process, a species that was found to behave in water as a discrete self-inclusion complex below 2.5 mM concentration and to form supramolecular aggregates in the 2.5-70 mM range. Furthermore, we demonstrate how the abnormal kinetic stability of the hydrazone bonds on the macrocycle annulus can be advantageously used for the conversion of the obtained pseudo[1]rotaxane into other exo-functionalized macrocyclic species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call