Abstract

The 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ceramic films were prepared using the water-based tape casting method. Two main components of the slurry are water and solids. The concentrations of other chemicals, the surfactant and binder, are at the level of 1 wt.%. Both binder and surfactant are eco-friendly polymers. Additional chemicals are not required. The optimal concentration of surfactant determined through viscosity measurements. The density of the ceramics was studied as a function of the concentration of water and binder. The density is nearly independent of amount of water despite a wide range of values of concentration. This independence is a powerful tool to cast using different techniques. The density substantially depends only on binder concentration. The polymers removal protocol of the cast films was optimized using thermogravimetric analysis. As a result, the translucent ceramic films with a relative density of 98% and thickness of 70 μm were prepared. The permittivity, remnant polarization and pyrocurrent measurements, along with the scanning electron microscopy, prove the high density of the ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.