Abstract

In this paper, we described a simple growth-doping approach for aqueous synthesis of Cu-doped ZnSe quantum dots (Cu:ZnSe d-dots) with mercaptopropionic acid as stabilizer. The influences of the ratios of precursors and the concentration of Cu dopant ions on Cu:ZnSe d-dots synthesis were studied in detail in this study. The Cu dopant ions had significant influence on the optical properties of ZnSe d-dots. The bandgap emission of ZnSe was effectively restrained through Cu doping. The prolonged reflux facilitates the doping of Cu, which led to the red-shift of the emission of Cu:ZnSe d-dots from 465 to 495 nm. The stable Cu:ZnSe d-dots with high quality can be obtained under optimal conditions. As compared with cadmium-based nanocrystals synthesized in aqueous solution, Cu:ZnSe d-dots have much lower toxicity, indicating that they can be applied as outstanding fluorescent labels for biological assays, imaging of cells and tissues, even in vivo investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.