Abstract

Phosphate buffers are essential for many areas of studies. However, their influence on buffered systems is often ignored. The phosphate salts can interact with biologically important macromolecules (e.g. proteins) and stabilize or destabilize them. With our research, we want to answer question what kind of interactions, if any, occur between phosphate ions and a protein backbone model — N-methylacetamide (NMA). ATR-FTIR spectroscopy in the amide I range and in the regions characteristic for PO vibrations provides information on direct and indirect (water-mediated) interactions. The analysis is supported by chemometric, DFT, and QTAIM calculations. Our results indicate that direct NMA–phosphate ion interactions are quite rare and indirect. Water molecules seem to play an important role in such systems. The model studies indicate that no preferential interactions between NMA and phosphate ions in solutions are formed, and may imply that such interactions are also unfavorable in protein-based systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.