Abstract

By combining neutron diffraction and Monte Carlo simulations, we have determined the microscopic structure of the hydration ions shell in aqueous solutions of MgCl(2) and CaCl(2), along with the radial distribution functions of the solvent. In particular the hydration shell of the cations, show cation specific symmetry, due to the strong and directional interaction of ions and water oxygens. The ions and their hydration shells likely form molecular moieties and bring clear signatures in the water-water radial distribution functions. Apart from these signatures, the influence of divalent salts on the microscopic structure of water is similar to that of previously investigated monovalent solutes, and it is visible as a shift of the second peak of the oxygen-oxygen radial distribution function, caused by distortion of the hydrogen bond network of water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.