Abstract

The aim of this study was to evaluate the effect of aqueous solutions of deep eutectic solvent, Cholinium Chloride:Urea ([Ch]Cl:U) at 50 wt% and 20 wt%, using different molar ratios (1:1, 2:1 and 1:2) on the enzymatic hydrolysis of xylan for xylose production and its subsequent bioconversion into xylitol using a recombinant yeast strain. The lowest xylan conversion into xylose (45%) was obtained using 1:2 [Ch]Cl:U molar ratio. On the other hand, the 1:1 [Ch]Cl:U molar ratio, at 20 wt% in water, improved this conversion, achieving the highest xylose yield (81.4%). The xylitol production was then optimized with [Ch]Cl:U (1:1) at 20 wt% by simultaneous saccharification and fermentation process, attaining 23.67 g/L, corresponding to 66.04% of xylitol yield. This study reveals the possibility of using xylan solubilized in DES aqueous solutions directly for xylitol production, thus assembling a one-step process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.