Abstract

Beryllium ion elicits p53-mediated cell cycle arrest in some types of human cancer cells, and it is a potent inhibitor of GSK3 kinase activity. Paradoxically, Be2+ is regarded to have almost negligible aqueous solubility at physiological pH, due to precipitation as Be(OH)2. This study demonstrates that the interaction of Be2+ with serum proteins greatly increases its effective solubility. In typical serum-supplemented mammalian cell culture medium, Be2+ was soluble up to about 0.5 mM, which greatly exceeds the concentration needed for biological activity. Some biochemical studies require protein-free Be2+ solutions. In such cases, the inclusion of a specific inorganic counterion, sulfate, increased solubility considerably. The role of sulfate as a solubility-enhancing factor became evident during preparation of buffered solutions, as the apparent solubility of Be2+ depended on whether H2SO4 or a different strong acid was used for pH adjustment. The binding behavior of Be2+ observed via isothermal titration calorimetry was affected by the inclusion of sodium sulfate. The data reflect a “Diverse Ion Effect” consistent with ion pair formation between solvated Be2+ and sulfate. These insights into the solubility behavior of Be2+ at physiological and near-physiological pH will provide guidance to assist sample preparation for biochemical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.