Abstract

Aqueous-based natural graphite particulates for fabrication of lithium-ion battery anodes are investigated with emphasis on chemical control of suspension component interactions among graphite particulates, sodium carboxymethyl cellulose (CMC), and emulsified styrene butadiene rubber (SBR). The chemical stability and dispersion properties of the natural graphite particles are characterized using electroacoustic, flow behaviour and green microstructural observations, as well as by measurement of pore size. Correlation is made between the dispersion characteristics and the electrochemical performance of the particles. The dispersion stability of the graphite suspension is improved by charge development when both SBR and CMC are incorporated into the graphite suspension, compared with an unstable graphite suspension prepared with CMC alone. A method to improve the dispersion and homogeneity of the suspension component based on the use of SBR and CMC is proposed. Electrochemical experiments using a Li–organic electrolyte–as-cast natural graphite half-cell and 750-mAh lithium-ion cells show an initial discharge capacity above 340 mAh g −1, improved charge–discharge efficiency, and excellent rate capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.