Abstract
AbstractThe polymerization of acrylamide initiated by the acidic permanganate–ascorbic acid redox pair has been studied in aqueous media at 30 ± 0.2°C in nitrogen atmosphere. The initial rate of polymerization has been found to be proportional to nearly the first power of the catalyst KMnO4 concentration within the range 6.0 × 10−3–14.0 × 10−3 mole/l. The rate is proportional to the first power of the monomer concentration within the range 4.00 × 10−2–12.0 × 10−2 mole/l. However, the rate of polymerization is independent of ascorbic acid concentration within the range 3.0 × 10−3–6.0 × 10−3 mole/l., but the further increase of the concentration depresses the rate of polymerization as well as maximum conversion. The initial rate increases but the maximum conversion decreases as the temperature is increased within the range 20–35°C. The overall energy of activation has been found to be 9.8 kcal/mole. The optimum amount of sulfuric acid is essential to initiate the polymerization but its presence in excess produces no effect either on the rate of reaction or the maximum conversion. Water‐miscible organic solvents and salts, e.g., CH3OH, C2H5OH, (CH3)2CHOH, KCl, and Na2SO4, depress the rate. Slight amounts of MnSO4 · H2O and a complexing agent NaF increase the rate of polymerization. Cationic and anionic detergents have been found to decrease and increase the rate, respectively, while nonionic surfactants have no effect on the rate of polymerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science: Polymer Chemistry Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.