Abstract

Abstract The research into the aqueous photocatalytic oxidation of the anti-inflammatory drug prednisolone was undertaken with P25 titanium dioxide (Evonik) and visible light-sensitive sol-gel synthesized titania-based photocatalysts containing carbon, sulphur, and iron. Possible prednisolone photocatalytic oxidation reaction pathways were proposed based on a number of oxidation by-products determined in the present study. The prednisolone adsorption properties, effects of initial prednisolone concentration, pH, usual wastewater matrix admixtures, like carbamide and sucrose, were studied. The nontoxicity of doped catalysts towards Tetrahymena thermophila, a ciliate protozoa present in the activated sludge, indicated their lower oxidative ability compared to P25, but also implied their potential application in pre-treatment of toxic hazardous materials under VIS or solar radiation before the biological degradation stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call