Abstract
Copper nanocubes with tunable edge lengths over the range from 49 to 136 nm and ultrasmall octahedra with opposite corner distances of 45, 51, and 58 nm have been synthesized in aqueous solutions by reducing CuCl2 or copper acetate with ascorbic acid in the presence of octahedral gold nanocrystal cores and hexadecylamine (HDA) at 100 °C for 45 min to 1.5 h. Addition of HDA increases the solution pH and acts as a coordinating ligand to the copper ions to facilitate controlled copper shell growth. Due to ultralarge lattice mismatch between Au and Cu, nonuniform copper deposition yields cubes and octahedra with noncentrally located gold cores. The Au–Cu octahedra show little shift in the plasmonic band with increasing particle size. For Au–Cu nanocubes, the degree of absorption band red-shift gets smaller as cube size increases. The Au–Cu nanocubes have shown reasonable reactivity toward 4-nitrophenol reduction at 40 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.