Abstract

This study examined the influence of process variables (glycerol concentration in feed, coupled temperature/pressure and space velocity) in the catalytic performance in the APR of glycerol over 0.3Pt/CoAl catalyst in a continuous fixed-bed reactor in order to maximize the production of H2. The effect of glycerol concentration in the feed was studied from 5 to 20 wt%, the coupled temperature/pressure varied from 225 °C/25 bar to 260 °C/50 bar and the spatial velocity was changed from 0.68 to 17 h-1. Our results reflected that H2 production was favored at higher reaction temperature/pressure (3.62 vs. 2.49 molH2/molGly-converted, at the most severe and mild conditions, respectively), lower WHSV (3.89 vs. 1.27 molH2/molGly-converted, at the lowest and highest space velocity, respectively) and more diluted feedstocks (3.95 vs. 1.44 molH2/molGly-converted, at the most diluted and concentrated freestreams, respectively). A threshold value at 10 wt% glycerol was found for the ratio of dehydrogenation to dehydration liquid products. The post-reaction catalyst was also characterized by several techniques, showing that Co leaching was the major drawback, especially at the mildest operation conditions, while carbonaceous deposits are negligible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.