Abstract
Isoprene hydroxy hydroperoxides (ISOPOOH) formed by the photooxidation of isoprene under low-NO conditions play an important role in the formation and evolution of secondary organic aerosols, yet multiphase processes of ISOPOOH are poorly understood. By applying electron paramagnetic resonance spectroscopy, we observe that ISOPOOH undergoes aqueous-phase decomposition upon interacting with Fe(II) ions to form OH and organic radicals at room temperature. To reproduce the measured dependence of OH formation on the Fe concentrations by kinetic modeling, we postulate that Fe(II) ions react with ISOPOOH via Fenton-like reactions to form OH radicals with a rate constant of 7.3 × 10-18 cm3 s-1. At low concentrations, oxalate forms monocomplexes with Fe(II) ions, which can promote OH formation by ISOPOOH. However, at high concentrations, oxalate scavenges OH radicals, thereby lowering aqueous OH concentrations. These findings provide new insight for the atmospheric fate of ISOPOOH and reactive oxygen species generation in the aqueous phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.