Abstract

Sixteen new measurements of high precision for structure I methane hydrate with water between 31.93 and 47.39 °C are shown to be metastable and exhibit higher methane pressures than found by earlier workers. Comparison of earlier measurements between 26.7 and 47.2 °C permit positive identification of the structure II and the structure I hydrates. Forty-nine equilibrium constants Kp(h1[Formula: see text]l1g) for dissociation of structure I methane hydrate into water and methane, 32 between –0.29 and 26.7 °C for the stable hydrate and 17 between 31.93 and 47.39 °C for the metastable hydrate, are best represented by a three-parameter thermodynamic equation, which indicates a standard error (SE) of 0.63% on a single Kp(h1[Formula: see text]l1g) determination. The congruent dissociation melting point C(h1l1gxm) of metastable structure I methane hydrate is at 47.41 °C with SE 0.02 °C and at pressure 505 MPa. The congruent equilibrium constant Kp(h1[Formula: see text]l1g) is 102.3 MPa with SE 0.2 MPa. ΔH°t(h1[Formula: see text]l1g) is 62 281 J mol–1 with SE 184 J mol–1, and the congruent formula is CH4·5.750H2O with SE 0.059H2O. At the congruent point, ΔV(h1[Formula: see text]l1g) is zero within experimental precision, and its estimate is 1.3 with SE 1.6 cm3 mol–1. The stability range of structure I methane hydrate with water extends from quadruple point Q(s1h1l1g) at –0.29 °C up to quadruple point Q(h1h2l1g) at 26.7 °C, and its metastability range with water extends from 26.7 °C up to the congruent dissociation melting point C(h1l1gxm) at 47.41 °C. Key words: methane hydrate, clathrate structure I, metastability range, dissociation equilibrium constant, formula, congruent melting point, metastability of structure I hydrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.