Abstract
The sorption of aqueous monoethanolamine (MEA) and ammonia solutions in keratin fibers and its subsequent effect on their mechanical performance has been investigated. The diffusion kinetics of MEA into keratin fibers for 0.1, 1.0, and 5 v/v % MEA in water at 30 and 50 °C were found to exhibit two clear regimes of absorption behavior: a linear Fickian diffusion regime for initial times up to 100 min, after which a second slower uptake process was observed. Single fiber tensile tests showed that the Young's modulus and the tensile failure stress for 5% MEA-treated fibers, compared to untreated fibers, were 25% lower after 1 h of treatment and 50% lower after 9 h of treatment. Aqueous treatments of 0.1 and 1% MEA, as well as 0.6 and 3% aqueous ammonia, had no measurable effect on either Young’s modulus or tensile failure stress for the fibers. Scanning electron microscopy images and protein content analysis confirmed that keratin fibers exposed to 5% MEA solution exhibited significant surface damage as well as high levels of protein loss. This study confirms for the first time the important damage hair treatments containing 5% aqueous MEA can cause on keratin fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.