Abstract

Driven by energy demand and commercial necessities, rechargeable aqueous metal ion batteries (RAMBs) have gained increasing attention over the last few decades as high-power and high-energy hubs for large-scale and ecofriendly energy storage devices (ESDs). However, recently explored RAMBs still do not provide the performance needed in order to be realized in grid-scale storage operations due to their poor electrochemical stability, low capacity, low working voltage, and apparently low specific energies. Herein, we have fabricated a new RAMB using MgMn2O4 as the cathode and zinc as the anode for the first time. The stable electrochemical performance of this RAMB at high current rates (∼80% capacity retention at 500 mA g–1 after 500 cycles) and a very high specific energy of 370 Wh kg–1 at a specific power of 70 W kg–1 make this newcomer to the family of RAMBs a serious contender for the exploration of safe and green ESDs in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.