Abstract

AbstractPorous, highly crystalline Nasicon‐type phase LiTi2(PO4)3 has been prepared by a novel poly(vinyl alcohol)‐assisted sol–gel route and coated by a uniform and continuous nanometers‐thick carbon thin film using chemical vapor deposition technology. The as‐prepared LiTi2(PO4)3 exhibits excellent electrochemical performance both in organic and aqueous electrolytes, and especially shows good cycling stability in aqueous electrolytes. An aqueous lithium‐ion battery consisting of a combination of LiMn2O4 cathode, LiTi2(PO4)3 anode, and a 1 M Li2SO4 electrolyte has been constructed. The cell delivers a capacity of 40 mA h g–1 and a specific energy of 60 W h kg–1 with an output voltage of 1.5 V based on the total weight of the active electrode materials. It also exhibits an excellent cycling stability with a capacity retention of 82 % over 200 charge/discharge cycles, which is much better than any aqueous lithium‐ion battery reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.