Abstract

Developing aqueous electrolyte compatible, redox-active polymers that can be processed from environmentally sustainable solvents is desirable because these traits will effectively reduce environmental impact and human health hazards during processing procedures and in the final device architecture. To achieve organic solvent solubility and aqueous compatibility, a poly(3,4-propylenedioxythiophene) containing four ester functionalities was synthesized via direct arylation polymerization. The resulting polymer was spray-cast into a thin film from the environmentally sustainable solvent 2-methyltetrahydrofuran, and the presence of multiple polar functionalities rendered the film aqueous electrolyte compatible. The multiester-functionalized polymer exhibits a relatively low onset of oxidation (∼0.4 V vs Ag/AgCl) and electrochromic character by transitioning from a colored neutral state to a colorless oxidized state with increasing potential in 0.1 M NaCl aqueous electrolyte. Additionally, the ester-functionalized polymer exhibits similar electrochromic properties in aqueous electrolytes when compared to traditional alkyl-substituted poly(3,4-propylenedioxythiophenes) in organic electrolytes, as evidenced by contrast values of ∼70% and switching speeds of ∼2 s. This work highlights the use of multipolar functionalities as a design strategy for synthesizing organic solvent processable, aqueous electrolyte compatible redox-active polymers without postpolymerization modifications or the sacrifice of electrochromic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call