Abstract

Abstract Radiative cooling may serve as a promising option to reduce energy consumption for space cooling. Radiative cooling paints provide a cost-effective and scalable solution for diverse applications and attract great attention, but the state-of-art cooling paints generally use non-eco-friendly organic solvents and need large thicknesses (>400 μm) to realize high performance, which leads to high cost and environmental issues in implementation. This work aims to address these challenges by developing eco-friendly aqueous paints with low thickness (below 150 μm) by adopting a double-layer design based on a complementary spectrum strategy. The structure consists of a wide bandgap top layer to scatter short-wavelength light and a bottom layer with high reflectance to visible and near-infrared (NIR) irradiation. Effects of different design factors are studied using numerical simulation and experiments to attain the optimal design. The resulting Y2O3–ZnO paints show a strong reflectance of 95.4 % and a high atmospheric window emissivity of 0.93 at a low thickness of 150 μm. Field tests in the subtropic humid climate of Hong Kong demonstrated sub-ambient cooling of 2 °C at noon and 4 °C at night without shielding convection. The paints also show high robustness and excellent resistance to water and UV light attacks, rendering them promising for large-scale applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.