Abstract

Model polyamide thin films were prepared through a controlled interfacial polymerization route known as molecular layer by layer (mLbL). Films were synthesized directly onto quartz crystals and subjected to halogenated aqueous environments that are known to cause degradation of the amide network. A quartz crystal microbalance (QCM) was used as the detection platform to ascertain mass loss due to degradation in real time. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements were also performed at various stages of the degradation sequence to elucidate the chemical and morphological changes at the surfaces respectively. Appropriate strategies for accurately comparing material degradation resistance are proposed along with modifications to the crosslinked polyamide chemistry to produce more halogen tolerant polymeric surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call