Abstract

Degradation reactions of micropollutants such as antibiotics with OH radicals are very important in terms of environmental pollution. Therefore, in this study, the degradation kinetic mechanism of 6-aminopenicillanic acid (6-APA) with OH radical was investigated by density functional theory (DFT) methods. For the calculations, different functionals such as B3LYP, MPW1PW91, and M06-2X were used with a 6-31g(d,p) basis set. The aquatic effect on the reaction mechanism was investigated by conductor-like polarizable continuum model (CPCM). For the degradation kinetics in aqueous media, the addition of explicit water molecules was also calculated. Subsequent reaction mechanism for the most probable reaction product was briefly discussed. Among the functionals used, B3LYP results were consistent with the experimental results. Calculated kinetic parameters indicated that the OH-addition path was more dominant than the H-abstraction paths. With the increase of explicit water molecules in the models, the energy required for the formation of transition state complexes decreased. The overall rate constant is calculated as 2.28 × 1011M-1s-1 at 298K for the titled reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.