Abstract

Bench-scale kinetics tests were conducted to evaluate the formation of disinfection by-products (DBPs), as well as the odorant degradation, during chlorination of representative algal odorants. β-Cyclocitral degradation better followed a pseudo first order kinetics pattern, while the decomposition behaviors of β-ionone and heptanal were better described by the pseudo second order kinetics. Trihalomethanes (THMs) were commonly found during chlorination of β-cyclocitral, β-ionone and heptanal, but dimethylsulfide and dimethyl trisulfide did not contribute to the THM formation. In contrast, haloacetic acids (HAAs) were undetectable in all the samples. During chlorination of β-cyclocitral, β-ionone and heptanal, primary intermediate oxidation products were identified. Particularly, β-ionone was a significant THM precursor. Typically, the formation of chloroform was favored with the increasing pH from 2 to 12. In the tests to chlorinate raw water collected from the Taihu Lake, China, odorants in Microcystis aeruginosa could contribute to the chloroform formation. β-Cyclocitral and β-ionone, accounting for 0.021%μg/μg DOC and 0.0027%μg/μg DOC of intracellular organic matter (IOM), produced 0. 98% and 0.78% chloroform of IOM formed, respectively. This study demonstrated that algal odorants played a critical role in the DBP formation during chlorination in water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.