Abstract

Nalidixic acid (NAL) is a broad-spectrum antimicrobial widely used for urinary tract infections. As demonstrated, complexation of NAL with Zn2+, Mn2+ and Cu2+ was often used to get new formulations with an enhanced efficiency and potency. Therefore, the elucidation of behavior of NAL in solution and of its interaction with metal cations are crucial to better understand the influence of complexation on NAL efficiency and to find the optimal conditions to propose novel formulations. As a preliminary study, spectrophotometric titrations were carried out on NAL to determine the values of the protonation constants and to define its acid-base behavior. Then, the interaction with the three metal cations Zn2+, Mn2+ and Cu2+ was investigated by potentiometric and spectrophotometric titrations, varying the conditions of temperature, ionic strength and metal-ligand ratio, thus allowing to get the most robust speciation model and to determine the formation constants with Zn2+, Mn2+, and Cu2+ under different conditions, the sequestering ability of NAL towards metal cations, the formation enthalpic and entropic changes. A simulation under serum conditions was reported to show the relevance of the investigated species. Finally, LD-MS (laser desorption ionization mass spectrometry) and MS/MS analyses highlighted for all systems the formation of the complex species between Zn2+, Mn2+ and Cu2+ with NAL. MS/MS investigations assigned the sites of coordination of the ligand with the metal cation. More precisely, deprotonated NAL coordinates the metal cation via the oxygens of the carboxylate and the carbonyl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.