Abstract
Biamphiphilic ionic liquids (BAILs) based on 1,3-dialkylimidazolium cation and alkyl sulfate anions ([C(n)H(2n+1)mim][C(m)H(2m+1)OSO(3)]; n = 4, 6, or 8; m = 8, 12) have been synthesized and characterized for their self-assembling behavior in the aqueous medium. Effects of alteration of alkyl chain length in cation and anion on surfactant properties of BAILs have been examined from surface tension measurements. The effectiveness of surface tension reduction for BAILs has been found to be exceptionally higher as compared to single chain surface active ILs/conventional surfactants. The thermodynamics of the aggregation process has been studied using isothermal titration calorimetry (ITC) and temperature dependent conductivity experiments. Dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) studies showed that BAILs formed distinct aggregated structures depending upon the amphiphilic character present in the cation and anion. BAILs ([C(n)H(2n+1)mim][C(m)H(2m+1)OSO(3)]) form micelles when n = 4, 6; m = 8, intermicellar aggregates when n = 4, 6; m = 12, and vesicles when n = 8; m = 8, 12. Gold nanoparticles and microplates have been synthesized in micellar and vesicle solutions of BAILs using a simple photoreduction method. The studies show the potential of BAILs for constructing micelles and supramolecular assemblies, such as bilayer vesicles, which are effective in preparation of nanomaterials of controlled size and morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.