Abstract

AbstractPollution caused by heavy metal ions has become a global issue owing to their severe threat to the ecological environment and human health. However, it remains a considerable challenge to detect heavy metal ions in an efficient, selective, and high signal‐to‐noise ratio way. Herein, a portable and sensitive method is presented to probe Hg2+ by using an ultralong afterglow dispersion. The in situ encapsulation of phosphorescent carbon dots (CDs) within rigid hydrogen‐bonded organic frameworks (HOFs) leads to ultralong room temperature phosphorescence (RTP) in water with a maximum lifetime of up to 974.86 ms. Moreover, the resultant CDs@HOFs material exhibits robust and long‐term RTP emission with enhanced performance under strongly acidic or alkaline conditions, which contributes to the practical detection of Hg2+ in water. As such, an efficient and sensitive afterglow probe is facilely fabricated by integrating CDs@HOFs with a Hg2+ probe Rhodamine B derivative (RhBTh), demonstrating selective sensing of Hg2+ with greatly improved signal‐to‐noise ratios based on the triplet‐singlet Förster resonance energy transfer system (TS‐FRET). This work not only provides a reliable and versatile method for realizing robust RTP emission in water, but also expands the applications of afterglow materials in the field of optical sensing of toxic analytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.