Abstract

Peru is one of the megadiverse countries worldwide, displaying a great diversity of ecosystems due to its tropical location, marine currents, and complex relief, which jointly define environments differentiated by altitude and climatic conditions. The arid and semi-arid ecosystems comprising xeric and Andean shrublands, coastal deserts, and coastal hills, illustrate this diversity of ecosystems; these stretch over 177 358 km2, representing 13.8% of the Peruvian territory. Several studies on aquatic macroinvertebrates are being conducted in these ecosystems; although not so numerous yet, have shown a rise in recent years. The objective of this work was to determine the composition and distribution of aquatic macroinvertebrates in the arid and semi-arid ecosystems of Peru. To this end, we conducted a literature survey; the articles and theses found were reviewed and analyzed. The following keywords were used: macroinvertebrates, macrozoobenthos, bioindicators, diversity of aquatic organisms, and water quality; we used the Google Academic search engine, Scopus, Web of Science, ResearchGate and the thesis repositories of Peruvian universities, additionally a thesis from the University of Barcelona. Of a total of 53 sources of information, 38 are theses and 15 are scientific articles conducted from 1992 to 2020, referring to studies conducted at elevations ranging from 0 to 3,831 m asl. Most studies were conducted at the Lima and La Libertad departments, resulting in 20 and 10 publications, respectively. The topics addressed most frequently were bioindication, biodiversity, taxonomy, and distribution. Most theses were carried in the Universidad Nacional de Trujillo and the Universidad Nacional Mayor de San Marcos, with 12 and 10 theses, respectively. The period 2011–2020 records the largest number of publications (40). According to the type of aquatic ecosystem, rivers (38) were the systems most intensively studied, followed by coastal wetlands (14) and lagoons (2); to note, one thesis studied two types of ecosystems. Specimens were collected mainly with the Surber and D nets; as a result, seven phyla, 10 classes, 39 orders, and 118 families were reported. The highest richness of families corresponds to rivers (110), followed by coastal wetlands (57), and lagoons (12). The western hydrographic slope recorded the highest richness at phylum, class, order, and family levels, likely because most investigations were conducted in this slope. On the other hand, the phyla Cnidaria, Nematoda, and Nematomorpha were not recorded in the eastern slope, which showed fewer orders (19) relative to the western slope (39). A similar trend is observed at the family level: of the 118 families recorded, 59 were reported for the eastern slope. The most common families at both sides were Chironomidae, Baetidae, Simuliidae, Elmidae, Hydrophilidae, Libellulidae, Physidae, Dytiscidae, Ceratopogonidae, Coenagrionidae, Hydroptilidae, Hydropsychidae, and Tipulidae. Separately, the most common families in all types of aquatic ecosystems were Chironomidae, Baetidae, and Dytiscidae. It is recommended to further promote studies on macroinvertebrates living in the eastern slope, addressing taxonomic, and ecological topics, as well as broadening the approach to an integral ecosystem view. Finally, the biotic indices should be calibrated and validated for the main hydrographic basins. This work is an initial effort to review, systematize, analyze, and gather the results of studies on aquatic macroinvertebrates in Peru, particularly in arid and semi-arid ecosystems.

Highlights

  • The diversity of landscapes, natural regions, biomes, life zones, ecoregions, altitudinal zones, and ecosystems make of Peru one of the megadiverse countries of the world (MINAM, 2019a)

  • The high diversity of ecosystems in this country derives from its tropical location, exposure to marine currents, and complex orography, which define environments influenced by their particular altitude and climatic conditions

  • The data of the 53 references found were entered in an Excel 2016 spreadsheet; the data entered included studies by universities, year of publication, research works by departments, aquatic systems, subjects studied, and taxonomical classification of aquatic macroinvertebrates by phylum, class, order, and family

Read more

Summary

Introduction

The diversity of landscapes, natural regions, biomes, life zones, ecoregions, altitudinal zones, and ecosystems make of Peru one of the megadiverse countries of the world (MINAM, 2019a). The largest agricultural area of Peru, where export crop products are grown, including asparagus, grape, cotton, artichoke, mango, organic banana, and others (Velazco and Pinilla, 2018), is located in coastal zones. This results in high water demand, frequently causing hydric stress processes that are currently affecting water availability in these regions (Oré et al, 2012; Salazar, 2012; Urteaga-Crovetto, 2016)

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call