Abstract

Cryo-EM and X-ray crystallography provide crucial experimental data for obtaining atomic-detail models of biomacromolecules. Refining these models relies on library-based stereochemical restraints, which, in addition to being limited to known chemical entities, do not include meaningful noncovalent interactions relying solely on nonbonded repulsions. Quantum mechanical (QM) calculations could alleviate these issues but are too expensive for large molecules. We present a novel AI-enabled Quantum Refinement (AQuaRef) based on AIMNet2 neural network potential mimicking QM at substantially lower computational costs. By refining 41 cryo-EM and 30 X-ray structures, we show that this approach yields atomic models with superior geometric quality compared to standard techniques, while maintaining an equal or better fit to experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.