Abstract

Stomatal regulation is crucial for forest species performance and survival on drought-prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs ) and leaf water potential (Ψleaf ). All clones experienced a substantial decrease in root-specific root hydraulic conductance (Kroot-r ) in response to the water stress, but leaf-specific shoot hydraulic conductance (Kshoot-l ) did not change in any of the clones. The reduction in Kroot-r caused a decrease in leaf-specific whole-plant hydraulic conductance (Kplant-l ). Among clones, the larger the decrease in Kplant-l , the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot-r and gs . Our results demonstrated that the reduction in Kplant-l , attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant-l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.