Abstract

It has been demonstrated that the water channel protein aquaporin-4 (AQP4) plays an important role in astrocyte plasticity in response to a variety of injuries or stimuli. However, the potential role of AQP4 in astrocyte response to β-amyloid (Aβ) has not been studied. The purpose of this study was to investigate this issue. Compared to media control, the lower concentrations of Aβ1–42 (0.1–1μM) increased AQP4 expression in cultured mouse cortical astrocytes, while the higher concentrations of Aβ1–42 (10μM) decreased AQP4 expression. AQP4 gene knockout reduced Aβ1–42-induced astrocyte activation and apoptosis, which was associated with a reduction in the uptake of Aβ via decreased upregulation of low-density lipoprotein receptor related protein-1. Moreover, time-course and levels of Aβ1–42-induced mitogen-activated protein kinase phosphorylation were altered in AQP4 null astrocytes compared with wild-type controls. Our data reveal a novel role of AQP4 in the uptake of Aβ by astrocytes, indicating that AQP4 is a molecular target for Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.