Abstract

AimsNeurovascular-glymphatic dysfunction plays an important role in Alzheimer's disease and has been analysed mainly in relation to amyloid-beta (Aβ) pathology. Here, we aim to investigate the neurovascular alterations and mapping of aquaporin 4 (AQP4) distribution and dislocation associated with tau and Aβ. Materials and methodsPerfusion, susceptibility weighted imaging and structural magnetic resonance imaging (MRI) were performed in the pR5 mouse model of 4-repeat tau and the arcAβ mouse model of amyloidosis. Immunofluorescence staining was performed using antibodies against AQP4, vessel, astroglia, microglia, phospho-tau and Aβ in brain tissue slices from pR5, arcAβ and non-transgenic mice. Key findingspR5 mice showed regional atrophy, preserved cerebral blood flow, and reduced cerebral vessel density compared to non-transgenic mice, while arcAβ mice showed cerebral microbleeds and reduced cerebral vessel density. AQP4 dislocation and peri-tau enrichment in the hippocampus and increased AQP4 levels in the cortex and hippocampus were detected in pR5 mice compared to non-transgenic mice. In comparison, cortical AQP4 dislocation and cortical/hippocampal peri-plaque increases were observed in arcAβ mice. Increased expression of reactive astrocytes were detected around the tau inclusions in pR5 mice and Aβ plaques in arcAβ mice. SignificanceWe demonstrated the neurovascular alterations, microgliosis, astrogliosis and increased AQP4 regional expression in pR5 tau and arcAβ mice. We observed a divergent region-specific AQP4 dislocation and association with phospho-tau and Aβ pathologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call