Abstract
Since the discovery of a specific autoantibody in patients with neuromyelitis optica spectrum disorder (NMOSD) in 2004, the water channel aquaporin-4 (AQP4) has attracted attention as a target of autoimmune diseases of the central nervous system. In NMOSD, the autoantibody (NMO-IgG) binds to the extracellular loops of AQP4 as expressed in perivascular astrocytic end-feet and disrupts astrocytes in a complement-dependent manner. NMO-IgG is an excellent marker for distinguishing the disease from other inflammatory demyelinating diseases, such as multiple sclerosis. The unique higher-order structure of AQP4—called orthogonal arrays of particles (OAPs)—as well as its subcellular localization may play a crucial role in the pathogenesis of the disease. Recent studies have also demonstrated complement-independent cytotoxic effects of NMO-IgG. Antibody-induced endocytosis of AQP4 has been suggested to be involved in this mechanism. This review focuses on the binding properties of antibodies that recognize the extracellular region of AQP4 and the characteristics of AQP4 that are implicated in the pathogenesis of NMOSD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.