Abstract
The infiltration of blood components into the brain parenchyma through the lymphoid system is an important cause of subarachnoid hemorrhage injury. AQP4, a water channel protein located at the astrocyte foot, has been reported to regulate blood–brain barrier integrity, and its polarization is disrupted after SAH. Neuronal ferroptosis is involved in subarachnoid hemorrhage- (SAH-) induced brain injury, but the inducing factors are not completely clear. Transferrin is one of the inducing factors of ferroptosis. This study is aimed at researching the role and mechanism of AQP4 in brain injury after subarachnoid hemorrhage in mice. An experimental mouse SAH model was established by endovascular perforation. An AAV vector encoding AQP4 with a GFAP-specific promoter was administered to mice to achieve specific overexpression of AQP4 in astrocytes. PI staining, Fer-1 intervention, and transmission electron microscopy were used to detect neuronal ferroptosis, and dextran (40 kD) leakage was used to detect BBB integrity. Western blot analysis of perfused brain tissue protein samples was used to detect transferrin infiltration. First, neuronal ferroptosis 24 h after SAH was observed by PI staining and Fer-1 intervention. Second, a significant increase in transferrin infiltration was found in the brain parenchyma 24 h after SAH modeling, while transferrin content was positively correlated with neuronal ferroptosis. Then, we observed that AQP4 overexpression effectively improved AQP depolarization and BBB injury induced by SAH and significantly reduced transferrin infiltration and neuronal ferroptosis after SAH. Finally, we found that AQP4 overexpression could effectively improve the neurobehavioral ability of SAH mice, and the neurobehavioral ability was negatively correlated with transferrin brain content. Taken together, these data indicate that overexpression of AQP4 in the mouse brain can effectively improve post-SAH neuronal ferroptosis and brain injury, at least partly by inhibiting transferrin infiltration into the brain parenchyma in the glymphatic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.