Abstract

In many industrial processes, cooling with brines is preferable to cooling with an evaporating refrigerant. For medium and high temperatures (above about −35°C/−30°F), aqueous solutions of calcium chloride, sodium chloride, ethylene glycol, propylene glycol, and methanol have typically been used. For very low temperatures (down to about −80°C/-110°F) halocarbon refrigerants methylene chloride and trichloroethylene have generally been used. In recent years, both methylene chloride and trichloroethylene have come under increasingly strict regulation because of their toxicity. While many plants continue to use these brines, most are searching for alternates. This study was begun in response to the needs of a plant that was replacing methylene chloride with aqueous calcium chloride. The high viscosity of the calcium chloride brine caused design and operational problems. The above-mentioned brines, as well as aqua-ammonia, polydimethylsiloxane, and d-limonene, were compared for cost, toxicity, flammability, environmental safety, and energy efficiency. The energy efficiency comparison included comparisons of heat transfer coefficient, mass flow rate, volume flow rate, frictional pressure drop, inertial pressure drop, and pumping power. The comparisons indicated that aqua-ammonia was the best choice as a replacement for methylene chloride and trichloroethylene in some temperature ranges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call