Abstract

AQP4-IgG is an autoantibody associated with neuromyelitis optica spectroscopic disorder (NMOSD), a central nervous system inflammatory disease that requires early diagnosis and treatment. We designed two fusion proteins, AQP4-DARPin1 and AQP4-DARPin2, comprising the complete antigenic epitopes of aquaporin-4 (AQP4) and the constant region of the scaffold protein DARPin. These fusion proteins were expressed and purified from Escherichia coli and coated on microplates to develop an efficient method for detecting AQP4-IgG. Molecular dynamics simulation revealed that the fusion of AQP4 extracellular epitopes with DARPin did not alter the main structure of DARPin. The purified AQP4-DARPins bound recombinant antibody rAb-53 (AQP4-IgG) with affinities of 135 and 285 nM, respectively. Enzyme-linked immunosorbent assay (ELISA) and immunoprecipitation demonstrated that AQP4-DARPin1 specifically recognized AQP4-IgG in the NMOSD patient serum. AQP4-DARPin1 as a coated antigen showed higher ELISA signal and end point dilution ratio than full-length AQP4. Our AQP4-DARPin1-coated AQP4-IgG ELISA had 100% specificity and 90% sensitivity. These results indicate that AQP4-DARPin1, compared to existing detection strategies that use full-length or extracellular loop peptides of AQP4, provides a new and more effective approach to the ELISA detection of NMOSD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call