Abstract

Air quality has a significant influence on the environment and health. Instruments that efficiently and inexpensively detect air quality could be extremely valuable in detecting air quality indices. This study presents a robust deep learning model named AQE-Net, for estimating air quality from mobile images. The algorithm extracts features and patterns from scene photographs collected by the camera device and then classifies the images according to air quality index (AQI) levels. Additionally, an air quality dataset (KARACHI-AQI) of high-quality outdoor images was constructed to enable the model’s training and assessment of performance. The sample data were collected from an air quality monitoring station in Karachi City, Pakistan, comprising 1001 hourly datasets, including photographs, PM2.5 levels, and the AQI. This study compares and examines traditional machine learning algorithms, e.g., a support vector machine (SVM), and deep learning models, such as VGG16, InceptionV3, and AQE-Net on the KHI-AQI dataset. The experimental findings demonstrate that, compared to other models, AQE-Net achieved more accurate categorization findings for air quality. AQE-Net achieved 70.1% accuracy, while SVM, VGG16, and InceptionV3 achieved 56.2% and 59.2% accuracy, respectively. In addition, MSE, MAE, and MAPE values were calculated for our model (1.278, 0.542, 0.310), which indicates the remarkable efficacy of our approach. The suggested method shows promise as a fast and accurate way to estimate and classify pollutants from only captured photographs. This flexible and scalable method of assessment has the potential to fill in significant gaps in the air quality data gathered from costly devices around the world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.