Abstract

It is demonstrated that, in fungal cells grown in synthetic media, the Apyap1 gene is implicated in the modulation of aflatoxin biosynthesis following the perturbation of redox balance. This study suggests that an association between oxidative stress and aflatoxin biosynthesis also occurs in maize seeds. We used ΔApyap1, a strain in which the gene Apyap1 was disrupted, to verify whether this oxidative stress-related transcription factor, by affecting cell redox balance, can have a role in the modulation of aflatoxin synthesis. The amount of hydroperoxides (ROOH) produced by wild type (WT) and ΔApyap1, both grown in potato dextrose broth, was assayed in the filtrate. In maize seeds (30 g), inoculated with WT and ΔApyap1conidia and incubated at 30°C for 15 days, lipoxygenase activity (LOX), lipoperoxides (LOOH) production, fungal growth and aflatoxin biosynthesis was analysed. It was observed that ΔApyap1 released more hydroperoxides in the culture media and more aflatoxins in seeds, possibly through stronger stimulation of LOX, which, in turn led to greater LOOH production in the seeds. On the basis of the results, a hypothesis regarding strategies to control aflatoxin synthesis is formulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.