Abstract

Methylene blue (MB) is one of the industrial used organic dye and recalcitrant pollutant which creates a serious water pollution. Among the available techniques, photo degradation using light irradiation is one of the desirable choice to treat waste water. In this regard, we synthesized a binary nanocomposite of magnetite decorated with graphene oxide sheet (Fe3O4@GO) with modification of tetraethyl orthosilicate (TEOS) and 3-Aminopropyl triethoxysilane (APTES) by mechanical stirring method. The prepared nanocomposite was tested as a potential heterogeneous catalyst for degradation of methylene blue (MB) under UV irradiation. The synthesized nanoparticles were characterized by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared (FTIR), Thermogravimetric Analysis (TGA), and Energy-dispersive X-ray spectroscopy (EDX) techniques. The characterizations confirm the successful synthesis of the nanocomposite. The photocatalytic activity of the catalysts was gradually enhanced with time intervals. The maximum MB removal efficiency of 70.06 % was achieved over Fe3O4@GO composite catalyst, remarkably higher than using pure Fe3O4 (57.56 %). The newly developed materials was successfully recovered using an external magnet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call