Abstract

In this study, an electrochemical aptasensor was developed for the specific detection of sarcosine using a covalent organic framework (COF). The imine-based two-dimensional COF was synthesized through a solvothermal process using terephthaldehyde and melamine. This resulted in the formation of a structure that is highly porous and has a unique surface area of 908 m2/g. The produced biosensor demonstrated a significant linear relationship between charge transfer resistance (Rct) and various concentrations of sarcosine in blood serum samples. The aptasensor had two linear ranges, spanning from 0.5 fM to 700 fM and 10 pM to 0.12 nM, respectively, with a detection limit of 0.15 fM. The incorporation of high surface area COFs in the aptasensor design offers a promising combination of sensitivity, stability, and specificity. This combination creates a valuable device for diagnosing and monitoring of prostate cancer and potentially other diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.