Abstract

Aptamers are composed of short RNA or single-stranded DNA sequences that, when folded into their unique 3D conformation, can bind to their targets with high specificity and affinity. Although functionally similar to protein antibodies, oligonucleotide aptamers offer several advantages over protein antibodies in biomedical and clinical applications. Through the enhanced permeability and retention effect, nanomedicines can improve the therapeutic index of a treatment and reduce side effects by enhancing accumulation at the disease site. However, this targets tumors passively and, thus, may not be ideal for targeted therapy. To construct ligand-directed "active targeting" nanobased delivery systems, aptamer-equipped nanomedicines have been tested for in vitro diagnosis, in vivo imaging, targeted cancer therapy, theranostic approaches, sub-cellular molecule detection, food safety, and environmental monitoring. This review focuses on the development of aptamer-conjugated nanomedicines and their application for in vivo imaging, targeted therapy, and theranostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.