Abstract

Hirudin, that is naturally occurring in leeches (Hirudo medicinalis) and known as the most potent natural inhibitor of thrombin, exerts double-edged effects in clinic application. It can be used as a therapeutic ingredient for cardiovascular disease, while it can be regarded as a toxic polypeptide with bleeding risk. Effective detection of hirudin in biological samples contributes greatly to reasonable therapy. In this study, we proposed a smart adsorbent based on affinity magnetic microspheres, where thrombin was immobilized for capturing hirudin in the animal serum. Aptamer was introduced as a ligand for linking the magnetic agarose microspheres and thrombin, thereby avoiding loss of biological activity of the enzyme to hirudin. Taken recombinant hirudin variant 2-Lys47 (rHV2) as a model, we established a rapid and bio-specific extraction method coupled with liquid chromatography and quadrupole-time-of-flight mass spectrometry (LC-QTOF/MS) for determination of hirudin in the serum. Owing to this strategy, a low limit of detection (LOD) of rHV2 (0.5 nM), a good linearity with correlation coefficient of 0.9975, an acceptable precision with relative standard deviation (RSD) below 3.6% (n = 6) and acceptable recoveries ranging from 85.7% to 90.2% were achieved. Moreover, the functionalized magnetic composite could be reused for at least nine cycles. Our work combined the merits of affinity separation and advanced instrument analysis for hirudin, providing a new vision to precise determination of hirudin in medical and pharmaceutical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call