Abstract

AbstractWe introduced an aptamer switch design that relies on the ability of post‐transition/transition metal ions to trigger, through their coordination to nucleobases, substantial DNA destabilization. In the absence of molecular target, the addition of one such metal ion to usual aptamer working solutions promotes the formation of an alternative, inert DNA state. Upon exposure to the cognate compound, the equilibrium is shifted towards the competent DNA form. The switching process was preferentially activated by metal ions of intermediate base over phosphate complexation preference (i.e. Pb2+, Cd2+) and operated with diversely structured DNA molecules. This very simple aptamer switch scheme was applied to the detection of small organics using the fluorescence anisotropy readout mode. We envision that the approach could be adapted to a variety of signalling methods that report on changes in the surface charge density of DNA receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.