Abstract

The overuse or abuse of quinolone antibiotics such as enrofloxacin (ENR) in veterinary medicine results in the presence of their residues in food and environment. Thus, a sensitive method is needed to detect them. Herein, we demonstrate a fluorescence resonance energy transfer (FRET) based aptasensor for ENR detection, using core-shell upconversion nanoparticles (CSUNPs) as an energy donor and graphene oxide (GO) as an energy acceptor. The core-shell structure and Gd3+ doping significantly increased the fluorescence intensity of CSUNPs and the FRET efficiency. The ENR aptamer was conjugated to CSUNPs through ligand exchange, and the π-π stacking between the aptamer and GO brought the aptamer-modified CSUNPs to the surface of the GO sheets, resulting in the formation of a CSUNP-GO complex and the subsequent quenching of CSUNP fluorescence. As a result, an aptasensor was established with the fluorescence of CSUNPs correlated with the ENR concentration within the range of 0.976 ng mL-1 to 62.5 ng mL-1, allowing ENR to be detected at a limit of 0.47 ng mL-1. This method reduced the detection limit by approximately 13-fold in 2 h compared to the commercial enzyme-linked immunosorbent assay (ELISA) kit. The aptasensor could also be applied to detect ENR from commercial milk powder samples with a detection limit of 1.59 ng mL-1, which was far below the regulated maximum residue limit of ENR in milk. The aptasensor could not detect other antibiotics, suggesting its good specificity towards ENR. Our work demonstrates a highly selective, sensitive and cost-effective method for detecting antibiotic residues in veterinary medicine. Since the aptamer can be switched to one recognizing another antibiotic, the aptasensors are used as a plug-and-play platform that can detect a variety of antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call