Abstract

Aptamers are recognition elements that are easy to synthesize and store, but their softness makes their stability and affinity subject to the influence of the environment. Herein, by taking advantage of the aptamer-specific ability to recognize targets and the fluorescence of nontoxic carbon dots (CDs), we constructed aptamer-guided luminous microspheres (~200 nm in size). These microspheres, with tetrahedral DNA (Td) as the skeleton, can actively recognize Salmonella enterica serovar Typhimurium (S. Typhimurium) and fluoresce after sensitively binding to the target. The fluorescence intensity emitted by the microspheres increased 3.05 times. The limitation of detection was 9 CFU/mL, with a detection range of 10–108 CFU/mL, and the recovery rate in qualified pasteurized milk and drinking water samples was 95.35–103.01%. Additionally, this presented fluorescence signal amplification strategy provides novel insights into the analysis of various food threat factors and other fluorescence imaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.