Abstract
With the outbreak of COVID-19, which is fast transmitting and highly contagious, the development of rapid, highly specific, and sensitive detection kits has become a research hotspot. The existing assay methods for SARS-CoV-2 are mainly based on enzymatic reactions, which require expensive reagents, hindering popular use, especially in resource-constrained areas. Herein, we propose an aptamer-based method for the assay of SARS-CoV-2 via binding of the spike protein using functionalized biomimetic nanochannels. To get the analogous effect of human ACE2, a receptor for the spike protein, the aptamer to bind to the spike S1 protein has been first screened by a SELEX technique and then immobilized on the previously prepared nanochannels. In the presence of SARS-CoV-2, the changes in steric hindrance and charge density on the surface of the nanochannels will affect the ion transport, along with a rapid electrochemical response. Our method has been successfully applied to detect the viral particles in clinical pharyngeal swab specimens in one step without sample treatment. We expect this rapid, reagent-free, and sensitive assay method to be developed as a useful tool for diagnosing COVID-19.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.