Abstract

Human serum is a huge bioinformatics database of human physiological and pathological state, many proteins/peptides among which can serve as biomarkers for monitoring human's health condition, thereby being worth exploring. The simple and fast capture of biomarkers from human serum is the first key step to realize their accurate detection. In this work, we developed the aptamer functionalized magnetic metal organic framework nanoprobe, and furtherly combined with mass spectrometry technology to establish an efficient method of identifying biomarkers. Taking insulin as example of biomarker in human serum, we developed sulfhydryl human insulin aptamer functionalized magnetic metal organic framework (denoted as Mag MOF@Au@HIA) through the post-synthetic modification of MIL-101(Cr)–NH2 for testing the applicability of the established method. Depending on the strong magnetic responsiveness and high specific area as well as high-loaded human insulin aptamers, the limit of detection of insulin was down to 1 ng/mL and 2 ng/mL in the standard insulin solution and human serum, respectively. Moreover, a good linear relationship (R2 = 0.998) was obtained by using standard insulin solution with concentration range from 100 ng/mL to 5 ng/mL, based on which the capture recovery of insulin with Mag MOF@Au@HIA from human serum was demonstrated to be excellent. All of the results indicate that the aptamer-functionalized magnetic metal organic framework is a promising nanoprobe for biomarkers capture in human serum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call