Abstract
The Hsp70 chaperone system plays an important role in protein quality control by assisting in the folding and clearance of misfolded proteins. However, the mechanism by which it chooses between folding and degradation pathways is not fully understood. In this study, we used an RNA aptamer for Hsp70 to perturb the function of Hsp70 in cell-free systems. We found that the aptamer inhibited both Hsp70-mediated folding and Hsp70-CHIP-mediated ubiquitination/degradation of a misfolded protein substrate. Based on these results, we explored a novel strategy for targeted protein ubiquitination, using an engineered bifunctional aptamer to tether a protein substrate to Hsp70. We demonstrated that increased Hsp70-CHIP-mediated ubiquitination of the tethered protein substrate can be specifically induced by this bifunctional aptamer. This strategy may be useful in selective degradation of disease-causing proteins for therapeutic purposes. In addition, these studies provide insight into the mechanism of Hsp70-mediated protein triage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.