Abstract
Selective and nondisruptive in vivo neurochemical monitoring within the central nervous system has long been a challenging endeavor. We introduce a new sensing approach that integrates neurocompatible galvanic redox potentiometry (GRP) with customizable phosphorothioate aptamers to specifically probe dopamine (DA) dynamics in live rat brains. The aptamer-functionalized GRP (aptGRP) sensor demonstrates nanomolar sensitivity and over a 10-fold selectivity for DA, even amidst physiological levels of major interfering species. Notably, conventional sensors without the aptamer modification exhibit negligible reactivity to DA concentrations exceeding 20 μM. Critically, the aptGRP sensor operates without altering neuronal activity, thereby permitting real-time, concurrent recordings of both DA flux and electrical signaling in vivo. This breakthrough establishes aptGRP as a viable and promising framework for the development of high-fidelity sensors, offering novel insights into neurotransmission dynamics in a live setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.