Abstract

The development of rapid, accurate, and efficient detection methods for Salmonella can significantly control the outbreak of salmonellosis that threatens global public health. Despite the high sensitivity and specificity of the microbiological, nucleic-acid, and immunological-based methods, they are impractical for detecting samples outside of the laboratory due to the requirement for skilled individuals and sophisticated bench-top equipment. Ideally, an electrochemical biosensor could overcome the limitations of these detection methods since it offers simplicity for the detection process, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The present scoping review aims to assess the current trends in electrochemical aptasensors to detect and quantify Salmonella. This review was conducted according to the latest Preferred Reporting Items for Systematic review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. A literature search was performed using aptamer and Salmonella keywords in three databases: PubMed, Scopus, and Springer. Studies on electrochemical aptasensors for detecting Salmonella published between January 2014 and January 2022 were retrieved. Of the 787 studies recorded in the search, 29 studies were screened for eligibility, and 15 studies that met the inclusion criteria were retrieved for this review. Information on the Salmonella serovars, targets, samples, sensor specification, platform technologies for fabrication, electrochemical detection methods, limit of detection (LoD), and detection time was discussed to evaluate the effectiveness and limitations of the developed electrochemical aptasensor platform for the detection of Salmonella. The reported electrochemical aptasensors were mainly developed to detect Salmonella enterica Typhimurium in chicken meat samples. Most of the developed electrochemical aptasensors were fabricated using conventional electrodes (13 studies) rather than screen-printed electrodes (SPEs) (two studies). The developed aptasensors showed LoD ranges from 550 CFU/mL to as low as 1 CFU/mL within 5 min to 240 min of detection time. The promising detection performance of the electrochemical aptasensor highlights its potential as an excellent alternative to the existing detection methods. Nonetheless, more research is required to determine the sensitivity and specificity of the electrochemical sensing platform for Salmonella detection, particularly in human clinical samples, to enable their future use in clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.