Abstract

The recently developed bio-barcode (BBC) assay using polymerase chain reaction (PCR) to generate signals has been shown to be an extraordinarily sensitive method to detect protein targets. The BBC assay involves a magnetic microparticle (with antibody to capture the target of interest) and gold nanoparticle (with recognition antibody and thiolated single-stranded barcode DNAs) to form a sandwich around the target. The concentration of target is determined by the amount of barcode DNA released from the nanoparticles. Here we describe a modification using aptamers to substitute the gold nanoparticles for the BBC assay. In this study, we isolated a 76-mer monoclonal aptamer against cytochrome-c (cyto-c) and this single-stranded DNA in defined 3D structure for cyto-c was used in the BBC assay for both recognition and readout reporting. After magnetic separation, the aptamer was amplified by PCR and this aptamer-based barcode (ABC) assay was sensitive enough to detect the cyto-c in culture medium released from the apoptotic cells after drug treatment at the picomolar level. When compared to the conventional cyto-c detection by Western blot analysis, our ABC assay is sensitive, and time for the detection and quantification with ready-made probes was only 3h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.